Autonomous navigation of a platform with UVc-light to prevent crop infestation by powdery mildew

1st AXEMA-EurAgEng Conference February 25th, 2017

Andreas De Preter

Background

- PhD-student, started in January 2016
- Research at Octinion
 - R&D-company
 - Automation in agrofood applications
- Member of Motion Estimation, Control and Optimization (MECO)– group of KU Leuven
- Supported by *Vlaams Agentschap Innoveren en Ondernemen* (VLAIO)

Strawberry industry: yearround cultivation system

Constant Menace: Powdery Mildew

- Illumination with UVc light (Investigated by Research Centre Hoogstraten)
 - Treatment every 48 hours
 - ▶ Suppression of 70 90 %
 - Harvested strawberries completely unaffected
- **Problem:** Treatment takes a lot of time
 - Big labour cost
- **Goal:** Automate the process

- Requirements for navigating:
 - ▶ 3-5 cm precision
 - constant velocity
- Positioning technology: accurate GPS => no option
 - Indoor positioning with Ultra Wideband

Dribble

Sneak peek

8

Content of presentation

Modeling the platform

Positioning the platform

- Controlling the platform
- Trajectory issues
- Results and discussion

Modeling the platform

Kinematic model

► Equations:

$$\begin{cases} \dot{X}_{c} = v_{x} \cdot \cos(\theta) \\ \dot{Y}_{c} = v_{x} \cdot \sin(\theta) \\ \dot{\theta} = \omega_{z} \\ v_{x} = \frac{v_{l} + v_{r}}{2} \\ \omega_{z} = \frac{v_{r} - v_{l}}{b} \end{cases}$$

2nd order behavior of motor drives included

Positioning the platform

Ultra Wideband

Least-squares solution of distances

State Estimation: Extended Kalman Filter

Controlling the platform

Model Predictive Control

On every time step *k*:

Optimization

Minimize: **Deviation** from reference of *k*+1 to *N*

Variables: State x[-] from *k*+1 to *N*

Inputs from *k*+1 to *N*

Constraints: Dynamic model of vehicle Min/Max values on actuator inputs Min/Max values on states

Trajectory issues

Trajectory issues

- First tests => good accuracy results
 - But: platform was clearly driving a curve
 - Offsets of UWB system
- Curved trajectory as reference

Results and discussion

Autonomous driving

Forward driving

Backwards driving

Discussion

- Requirements:
 - ► 3-5 cm accuracy
 - Constant velocity
- Remarks:
 - Curved trajectory => not sustainable
 - Eliminating UWB-offsets
 - UWB-system: prone to influences of objects in LOS
 - Adding local sensors

Conclusion

Autonomous platform

Positioning: UWB + EKF

Control: MPC

Remarks on reference trajectory

Tested + validated in realistic environment

Thank you for your attention. Questions?

